
www.manaraa.com

www.manaraa.com

LIBRARY OF THE
UNIVERSITY OF ILLINOIS

AT URBANA-CHAMPAICN

51034-

www.manaraa.com

The person charging this material is re-

sponsible for its return to the library from
which it was withdrawn on or before the

Latest Date stamped below.

Theft, mutilation, and underlining of books are reasons

for disciplinary action and may result in dismissal from

the University.

To renew call Telephone Center, 333-8400

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

DEC 2 9 Wife

APR !«•

L161—O-1096

www.manaraa.com

Digitized by the Internet Archive

in 2013

http://archive.org/details/computersimulati374adam

www.manaraa.com

www.manaraa.com

www.manaraa.com

\J / w- «7 /^

1° 37'/ Report No. 37U

A COMPUTER SIMULATION OF A LARGE SCALE ACADEMIC COMPUTER SYSTEM

by

Henry Russell Adams

February, 1970

JHECIBRARYDETHE

NOV 9 1972

UNIVERSITY OF ILLINOIS
AT URBANA-CHAMPAIGN

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN URBANA, ILLINOIS

www.manaraa.com

www.manaraa.com

Report No. 37^

A COMPUTER SIMULATION OF A LARGE SCALE ACADEMIC COMPUTER SYSTEM

by

Henry Russell Adams

February, 1970

Department of Computer Science
University of Illinois
Urbana, Illinois 6l801

Submitted in partial fulfillment of the requirements for the degree of
Master of Science in Computer Science in the Graduate College of the
University of Illinois, 1970.

www.manaraa.com

www.manaraa.com

5
in

TABLE OF CONTENTS

Page

1. INTRODUCTION 1

2

.

SIM/360 MODEL PHILOSOPHY AND IMPLEMENTATION 2

2.1 SIM/360 Modeling Techniques 2

2.2 Implementation of SIM/36O 3

2.2.1 Basic Model k

2.2.2 Model Options 5

3 • MODEL CONSTRUCTION AND OPERATION 6

3-1 Model Setup, Definition and Control 7

3-2 Job Generation 7

3.3 Job Accounting and Job Queue Control 8

3-^- Job Selection and Initiation

(including Core Management) . . 9

3-5 Processor Logic and Final Job Accounting 12

3-6 Priority Recalculation lU

3.7 Input/Output Channel Service 15

3.8 Input/Output Devices 17

k. SIM/36O USAGE 18

U.l System Parameters 18

h.2. System Options 18

k.3 SIM/36O Output 21

5. MODEL TEST RESULTS 2k

6. CONCLUSIONS 27

6.1 JSPAN Length Tests 27

www.manaraa.com

www.manaraa.com

Page

6.2 Comparison of Implicit and Dynamically

Calculated Dispatching Priorities 28

6.3 Comparison of I/O Request Ordering Techniques 29

6.k Summary 29

BIBLIOGRAPHY 31

www.manaraa.com

www.manaraa.com

1. INTRODUCTION

The implementation and operation of a large scale computer

system requires that several decisions be made with regard to system

configuration and operating techniques. Some of the questions which

arise are answered by outside agencies. For example, can we afford

another computer? Others are determined by the state of the art, be

it programming or hardware. For example, can we get a faster computer

or compiler? Still other questions involve the utilization of the

system on hand and the "trade-off" between gains and losses when certain

options are utilized. For example, should dispatching priority be

recalculated during the operation of a job? What length of input job

queue search gives the best utilization of the available core?

It is this last type of question which has no fixed answer.

As the needs of the computer installation vary, the "best" configuration

changes. It is time consuming and difficult, if not impossible, to try

all new ideas on the real system because the real system is needed for

the standard job stream. There is no gain if you must operate the

system at 50 percent capacity for days in order to collect data so that

you may improve operation 5 percent.

This paper describes the implementation, construction, and

use of a computer model, SIM/36O, which can be used in order to make

comparisons of techniques and system configurations without degradation

of the physical system.

www.manaraa.com

2. SIM/360 MODEL PHILOSOPHY AND IMPLEMENTATION

Modeling is the formation of an abstraction from a real

problem. Methods of modeling can be classified on one of two bases.

The first, method of solution, consists of (l) analysis, as in linear

programming, inventory models, or queue ing theory; (2) physical simu-

lation, with wind tunnels, equivalent circuits, or prototypes; and (3)

computer simulation, with either discrete or continuous models. Discrete

computer simulation models only sense the condition of the model at

specified time intervals. Continuous computer simulation models constantly

sense the condition of the model and are effectively analog programs.

Both of these techniques use Monte Carlo (random number) techniques

during operation.

The second basis of classification is the relationship of the

model to the actual problem. The major classes of this method of de-

scription are (l) iconic models, which are scaled replicas of the physical

problem, such as wind tunnels or prototype factories; (2) analog models,

which are formed by a functional transformation of the physical problem,

such as equivalent circuits of hydraulic problems; and (3) symbolic models,

ch are approximations of the physical problem with mathematical or

ical symbols used to express interrelationships, such as linear

programming, queueing theory, and computer simulation.

2.1 SLM/36O Modeling Techniques

SIM/360 is a symbolic, discrete computer simulation, as defined

above. As such, many of the decisions within the model are made by

evaluation of a pseudo-random number. (Pseudo-random numbers are used

sequence of numbers can be duplicated as required.)

A computer simulation of the IBM System/360 is advantageous

. both direct and indirect,

advantages are those such as (l) a first level increase

ficient use of the computer (that is, the demonstration that a

I actually will improve system operation if

www.manaraa.com

implemented); (2) the pinpointing of system bottlenecks and/or over-

supplied points where savings may be made; and (3) the ability to model

new additions to the computer system without the cost incurred in the

physical acquisition of such additions.

Indirect advantages come about when a new technique is suggested

as an analysis is made of the model or as a user of the model gains deeper

insight into the operation of the physical system by using the model.

SIM/360 was written in IBM's General Purpose Simulation System

(GPSS) in order to take advantage of the capabilities and construction

techniques provided by a language which was written specifically for

computer simulation. A GPSS program is written in terms which closely

parallel the flow chart of a model. For example, if an element X is to

be made busy, or seized, the GPSS instruction is SEIZE X. Not only does

this simplify programming, but it aids in explanation of the program to

others

.

Perhaps the most important reason for chosing a simulation-

oriented language over other types of languages is that the simulation

language automatically calculates, maintains, and records statistical

results for every major operation within the model.

2.2 Implementation of SIM/36O

The principle objective of the SIM/36O model is to provide

statistical output, under selected options, which will provide a

realistic comparison of the various system hardware configurations,

Operating System configurations, and input job streams.

In order for the output to be as accurate as possible, the

input job stream has been made independent of the remainder of the

program. Unless specifically altered during the simulation, the job

stream is the same under all system tests. Additionally, the option of

running under external job streams is provided.

In order to implement the SIM/36O program in GPSS, a minimum

time interval of one millisecond was chosen. Within one GPSS model,

only one time scale can be used. With the one millisecond minimum time

www.manaraa.com

k

interval, events which take less than this time must be accounted for

in one of three ways, (l) They are ignored; (2) their cumulative effect

is summed until it reaches one millisecond; or (3) a random choice of

zero to one millisecond is allowed. In the SIM/36O model, all methods

are used at various points. If the event directly effects the CPU

(which is assumed to be the prime resource), method (2) or (3) is used,

as in initiator action. In all other cases the delay is ignored, as in

the time a channel is busy issuing a seek command.

2.2.1 Basic Model

The SIM/360 model creates "jobs" which enter the job queue,

awaiting selection by an initiator for processing. After selection,

the job creates I/O actions for the model and uses the CPU. Upon

completion, accounting is accomplished, and the job is terminated. A

more complete description will be found in the chapter on program

operat ion

.

Job creation
Internal and/or
option h

Enter job queue

^

Process in CPU
alt or options 1, 3 } or 7

Initiation
Select job for CPU
Default or option 2

*
I/O Service
Default or options 5 or 6

Figure 1. Basic SIM/360 model job flow.

www.manaraa.com

2.2.2 Model Options

When using the SIM/36O model, there are options available by

which the system configuration can be altered to satisfy the desired

test conditions. Each option is chosen by setting the logic switch

associated with it. The following is a brief description of the capa-

bilities provided by each option. A more detailed description may be

found in the chapter on program operation, and parameters for each option

are found in the chapter on program use

.

Option 1 provides the capability to recalculate the dispatching

priority of initiated jobs during execution of the jobs.

Option 2 selects the next job to be initiated on the basis of

maximum contiguous core block size. Without this option, selection is

based on total core free

.

Option 3 substitutes an artificial delay for the central

processor, without specific I/O requests. This greatly simplifies the

model and should be used if the desired model information is external

to the CPU, as when simulating various J-Spans on the input job queue.

Option k allows the user to construct a specific job stream

for the model in order to facilitate accurate job description with

individual jobs composed of one or more transactions.

Option 5 simulates the ordering of I/O requests at the channel

by job priority instead of by the default first- in, first -out ordering.

Option 6 simulates the ordering of I/O requests at the channel

in such a way as to cause minimum seek time

.

Option 7 (only used in conjunction with option l) insures

alternate ordering in the CPU of jobs which have the same priority.

www.manaraa.com

3 . MODEL CONSTRUCTION AND OPERATION

The model is constructed of eight major segments. These

segments are:

1. Model Setup, Definition and Control

2

.

Job Generation

3. System Job Accounting and Job Queue Control

h. Job Selection and Initiation (including Core Management)

5- Processor Logic with Final Job Accounting

6. Priority Recalculation

7- Input/Output Channel Service

8

.

Input/Output Devices

The interaction is as shown in Figure 2

.

Job
Generation

Job Selection
& Initiation

* \

* *

\oys Tjr

Accoiin1:ine

Priority
Recalculation

i *
1

1

* i

Processor
Logic

4-
-

I/O Channel
Service

4, *
I/O Devices

= Transaction flow

= Information and control

Model Setup exercises control over all segments

'ire 2. Mode; ent interaction.

www.manaraa.com

3-1 Model Setup, Definition and Control

The Model Setup, Definition and Control segment exercises

overall control of the model operation. It contains no GPSS blocks,

hut consists entirely of descriptive entities such as global variables

and functions, equate statements, and dimension statements. Variables

and functions which are used in only one segment are contained in the

individual segments. The upper limits on all elements which are of

variable numbers are established. These elements include the initiators

and the disks. The default values used during program operation are

established by INITIAL cards within this segment.

3-2 Job Generation

The Job Generation segment creates the number of jobs indicated

in XH$JOBS for use by the remainder of the model. The jobs created may

be used as the only job stream input or in conjunction with externally

created job streams which are fed into the Job Accounting and Job Queue

Control segment. If TSTUA is set, no jobs are created.

The transactions are created at a rate set by the value of

XH$SPRED, which is interpreted in milliseconds. As they are created,

each transaction is assigned an individual job number in parameter 1,

and a random core size is assigned to parameter "J. At this point, a

check is made to see if the TST3 option has been selected. If it has,

no further parameters need be given values, and the transaction branches

to the Job Accounting and Job Queue Control segment. If it has not been

selected, the parameters associated with the I/O device identity, cylinder

number on the disk, and number of I/O requests (parameters k, 5 , and 12)

are given values. A random transfer is then made (controlled by FN$JTYP)

to create processing time intervals in parameters 8 (overlapped pro-

cessing) and 9 (unoverlapped processing), which approximate the three

types of jobs, namely CPU, MIX, and i/O.

The transaction then checks for option k selected. If it has

not been selected, each transaction represents one complete job, and its

formulation is complete. Therefore, it is sent to the Job Accounting

www.manaraa.com

3

and Job Queue Control segment. If option k has been selected, a portion

(established by FN$JBILD) of the transactions are split to create

multitransaction jobs. The jobs created are then processed in the Job

Accounting and Job Queue Control segment. All evaluations are computed

with random number 8, which is not used elsewhere in the model. This

insures that the same job stream can be created regardless of system

alterations

.

3-3 Job Accounting and Job Queue Control

The Job Accounting portion of this segment is almost

exclusively used by job streams which may have more than one transaction

per job, i.e., during option k selection. The input transactions are

directed by a JOBTAPE card to TESTU which is the beginning position of

the accounting portion. At TEST4, the transaction is checked to see

if it is a part of a job which is to be dumped (the user may specify

that a certain number of jobs are removed from the front of the input

job stream) . If the job of this transaction is not listed as one of the

jobs already determined to be dumped, a check is made to see if enough

jobs have been selected to be dumped. (The first n jobs are dumped,

where n equals the value of X$DUMP.) If more jobs need to be dumped,

job identity number (parameter l) is made a member of the group of

job numbers to be dumped so that all following portions of the job are

automatically deleted as soon as they arrive.

Once the proper number of jobs have been dumped, new jobs are

entered into the system until the number contained in X$IJOBS (number

of jobs to be considered) is equalled. The remainder of the jobs are

then routed to a dump location.

If a to be processed by the system, assignments are

made to parameters 2 and 3 (I/O type and control unit) . The first

.ion of the job enters the Job Queue Control portion and is entered

:ontention foj > at ion in the CPU after its core size (parameter

(all b the system parameters. Thir, is also the point

ally generated single transaction jobs enter the flow.

www.manaraa.com

A check is made to see if the number of jobs waiting is less than the

length of the queue to be searched for the next job to be initiated

(X$JSPAN) . If it is less, the transaction then checks for a free

initiator and sufficient free core in the CPU. Upon finding both of

these , the transaction proceeds to cause initiation of the job in the

CPU. If either of the above is not present, the transaction enters

the job queue INQUE to wait selection for initiation.

If the number of jobs awaiting initiation is greater than or

equal to X$JSPAN, the priority of the new job is compared with the

priority of the last job in INQUE. If the new job's priority is greater

than that of the other, the new job tries for initiation as above, and

the older job is sent to the front of the unscanned portion of the

queue. If the new job is not of a higher priority, it is sent to be

linked to the unscanned portion of the queue, in order of priority.

This insures that high priority jobs are considered ahead of lower

priority jobs.

The rest of the transactions of a job are routed dependent

on the position of the first transaction, i.e., the status of the new

job. If the job has not been initiated, the transactions are immediately

linked in a wait queue (WTPRO) . If the job has been initiated, a check

is made to determine whether all previous transactions of the job have

been completed. If not, the transaction is linked to await its turn

(in INPRO) . Otherwise, the transaction proceeds immediately to be

processed.

2>.k Job Selection and Initiation (including Core Management)

The Job Selection and Initiation segment of the program

performs functions of both the support system (ASP, LASP, or HASP) and

the Operating System during the operation of the model. A major portion

of it is the core management procedure, which is used during program

option 2. The procedure monitors the size of the largest block of

contiguous core which is free, and it bases job selection on both core

size and the job being in INQUE, i.e., within J- Span length of the

top of the queue.

www.manaraa.com

10

The only transactions which flow in this segment are those

created within the segment at the initial stages of the program to

perform the initiation. When the first transaction enters the segment,

it resets various savevalues which deal with core size or act as

pointers. This is done to insure that the starting conditions are

properly initialized after each CLEAR card, and to allow the user to

vary the total core size by adding only a STORAGE definition card of

the desired size. After this reinitialization, the single transaction

is split to create the number of initiators as indicated by X$INITS,

and each initiator is assigned an identity number. Only one initiator

at a time is allowed to be searching for a job in order to avoid

conflicts. This is accomplished by putting all free initiators except

one into a user chain, INITS, and releasing one when the first has

completed action.

A free initiator enters contention for the CPU before it begins

job selection. The initiator has a priority of 100 which insures that

it may interrupt any user job in the CPU. Additionally, the priority

of 100 insures that system jobs of higher priority can be run without

being preempted. Once the CPU has been preempted, used and returned,

the initiator proceeds to check for a job in INQUE which may be initiated.

The selection of a job is accomplished when the core size required by

a job (parameter 7) is less than or equal to the value of XH$FRECR. If

option 2 has been selected, XH$FRECR is equal to the size of the largest

block of core which is not being used. If option 2 has not been selected,

XH$FRECR equals the remaining space in CORE storage (R$C0RE)

.

If a job is found for initiation, the initator's identity

number is saved and the initiator waits for completion of the setup of

job in the CPU. This is signalled by the resetting of logic switch

INIT. Upon completion of job setup, the initiator checks for selection

option 2. If the option is not selected, the initiator releases the

. rom INITS, and joins the chain of initiators in

use, INIT . option 2 has been selected, the initiator gets the

location in the tal tree core which contains the

the largest block of free core. Parameters 3 and 1+ are

www.manaraa.com

11

assigned the values of the lower and upper limits of core allotted to

the current job of this initiator. The core table location is set to

indicate the limits of the block of core which is not needed by this

job. It is set to zero if no free core remains from the block.

The initiator then proceeds to find the largest remaining

block of free core. This is accomplished by comparing all entries in

the table of free core and saving the value of the largest block of free

core in XH$FKECR and the table location of this entry in XH$POINT. The

initiator then proceeds to release the next initiator and join the other

initiators in use in INITU.

If a job is not found for initiation, the initiator links to

INITW. The presence of an initiator in this chain is used to alter the

flow of new jobs in the Job Accounting and Job Queue Control segment.

If a new job will fit into the core, the initiator is released from

INITW" and proceeds as above

.

When a job completes processing it releases its initiator for

terminal processing. If option 2 is not selected, the initiator releases

an initiator to try to select a job for initiation. If option 2 is

selected, the initiator tries to merge the newly freed core with the

blocks of free core entered in the free core table. A block can be

merged if its lower limit is equal to the upper limit of the freed core

as given in parameter k of the initiator or if its upper limit is equal

to the lower limit of the freed core as given in parameter 3 • If merger

can be accomplished, the entries in the core table are adjusted to

indicate the new limits, and any extra table entries are zeroed. If no

merger can be accomplished, a free table level is found by either finding

a zeroed entry or by incrementing the pointer to the top level of the

table (X$CRTOP) . A test is then made to determine if the newly freed

block of core is larger than the previous largest block as contained in

XH$FRECR. If it is, the new value and new pointer are saved. The

initiator then proceeds to unlink the next initiator.

www.manaraa.com

12

3»5 Processor Logic and Final Job Accounting

When a job is selected for initiation, its first and possibly-

only transaction is transferred from the Job Accounting and Job Queue

Control to the Processor Logic and Final Job Accounting segment by the

Job Initiation segment. The transaction waits until the initiator's

identity number has been saved. It then obtains this number which is

used extensively in this segment as a job identifier since only one job

at a time is associated with any one initiator. This number is placed

in parameter 6. The transaction next moves one job from the unscanned

to the scanned portion of the job queue (if the unscanned portion contains

any jobs) . This maintains the scanned portion at the proper length and

insures the proper sequencing of jobs. The transaction next occupies

the required core as indicated in parameter 7 and signals its initiator

that it may proceed as soon as the job transaction reaches a stopping

point. If option 3 is selected, the transaction branches to an advance

block which delays it as directed by the initial values of X$ADVAN and

X$SSPRD. The transaction then proceeds to terminal processing. If

option 3 is not selected, the dispatching priority of the transaction

is multiplied by 10 to expand the range of possible priorities and allow

a more accurate recalculation if option 1 has beeen chosen.

As the job is put into contention for the CPU, the entries in

row 1 through 7 of the column of the DISP matrix (which acts as a task

control block) are initialized. There is one column for each possible

initiator. The rows represent:

Row

Initial priority of the job

Total time the CPU has been used by this job (this is initialized

to zero)

Absolute GPSS time that job entered core

Total time this job has been in a voluntary wait state

Core size of tta

/ "
|
tests since last priority recalculation

Job ID number (parameter])

www.manaraa.com

13

The information in rows 1 through 6 is used primarily during priority-

recalculation. Row 7 is used to establish the initiator number for

transactions of the job which might arrive in the system after the job

has been initiated and to restore the job identity number to parameter 1

when a transaction completes its use of the CPU. All other transactions

which are part of this job are released from WTPRO and linked to a

chain of transactions whose jobs are in process (INPRO)

.

From this point on, the processing of the first and all

subsequent transactions of a job is the same until completion of CPU

processing. Each transaction has its own priority set to the final

priority of the previously completed transaction. (The first trans-

action maintains its original priority because of the initialization

of DISP.) The transaction now joins a GROUP referenced by the initiator

number so that its priority can be changed if option 1 is selected.

Next, the time that the CPU is to be used for overlapped (concurrent

with processing of I/O requests) and unoverlapped (after completion of

I/O request) processing is established. This time, in milliseconds, is

calculated by using the fixed values in parameters 8 and 11 as upper

limits and evaluating a random number, modulo the upper limit. This

allows for limited random changes. Both values are calculated now

because the flow of the I/O request is affected if the amount of unover-

lapped processing is zero. An I/O request is now created by a SPLIT

block, and sent to the I/O service routine.

The transaction now enters contention for the CPU on a

priority basis. Upon gaining control of the CPU, the transaction delays

in an ADVANCE block for the calculated overlapped processing time. If

an interrupt occurs, the time remaining is saved, and the transaction

reenters contention. Upon completion of overlapped processing and

associated accounting, a test is made for unoverlapped processing. If

there is some to be performed, the transaction awaits completion of the

I/O request, and then enters contention for the CPU as in overlapped

processing. It then loops to recalculate times if parameter 12 (number

of I/O requests to be completed) is greater than one. If there is no

unoverlapped processing to be performed, the transaction branches to

the loop.

www.manaraa.com

Ik

When all loops have been completed (all I/O requests processed),

the job identity number is restored to parameter 1. If option k has not

been selected, the transaction, which represents a complete job, proceeds

to free its core and initiator, perform accounting entries, and indicate

that one job has been completed. If option k has been selected, parameter

13 is checked to see if this is the last transaction of a job (parameter

13 = l) . If it is not, the transaction frees the next transaction of the

associated job from INPRO. It then checks to see if it is the first

transaction of its job. If not, the transaction is destroyed. If it

is the first transaction, it must be saved because GPSS requires that

the transaction which enters a queue must be the one to depart it.

Since the first transaction is the one which is recorded in the accounting

queues CPU, INQUE, and a core size queue, it is retained in the holding

chain, BIN. When the final transaction of a job is sensed (parameter 13 =

l) , it is gated to unlink the first transaction of its job from BIN and

send it to terminal processing. If there is no transaction for this job

in BIN, the current transaction is also the first transaction (i.e.,

this is a one transaction job) , and the transaction is sent to terminal

processing.

3.6 Priority Recalculation

The Priority Recalculation segment is used only when option 1

has been selected. If it is not selected, the single transaction

which is to loop in this segment is destroyed. No other transactions

ever enter this segment. If option 1 is selected, the lapse time between

priority recalculations is the value of X$RECLC which has a default

value of 5000 milliseconds. At proper intervals, the transaction preempts

the CPU and recalculates the priority of all jobs in core. The

alculation is accomplished on the basis of the variable DISPZ, which

may be changed by the user. Additionally, the count of I/O requests

oset to zero so that the count is the total number of I/O requests

between pric -^calculations

.

option 7 is also selected, the recalculation is accomplished

rse or g alternate intervals. This insures that if two

www.manaraa.com

15

jobs vying for the CPU have the same priority assigned, their ordering

for access to the CPU will alternate upon successive priority recalculations

3-7 Input/Output Channel Service

As the I/O request is created in the Processor Logic segment,

it is entered into the Input/Output Channel Service segment which

controls the order of processing of the requests to the devices. As

the request enters the segment, a transfer is made based on I/O type

(parameter 2) . The current model has two types implemented- One type

is a drum access request (^-0 percent of all requests) and the other

type is a disk access request with a variable cylinder required (60

percent of all requests)

.

All drum requests are transferred to selector channel one for

processing to the drum. Since the drum is the only device attached to

this channel, it is modeled as an integral part of the channel. As the

request enters channel one, it is chained in a first- in, first-out order

if the drum is processing a prior request. When a request completes

drum processing, it unlinks a waiting request and proceeds to interrupt

processing.

Disk access requests are transferred to the dual channel pro-

cessing portion since disks may be accessed from either channel two or

channel three. As the request enters, tests are made to see if either

option 6 (request processing in order of minimum seek time) or option 5

(request processing in order of job priority) is selected. If neither

option is selected, the requests are chained in a first-in, first-out

order if the required device is busy. If option 6 is chosen, the requests

are linked to the device chain in order of cylinder number if the device

is busy, with zero the highest priority. If option 5 is chosen and the

device is busy, the requests are linked to the device chain by job

priority.

If no prior requests are using the device, the request

proceeds to vie for a channel. If no prior requests are awaiting a

channel and a channel is free, the request identifies itself with the

www.manaraa.com

16

free channel and proceeds to the device simulation. If other requests

are awaiting a channel or neither channel is free, the request is linked

into a waiting chain, DUAL, to await selection by the channel routine.

The channel routine contains two transactions (one identified with

each channel) which are gated for processing, dependent upon their

respective channel's status. When the channel is not in use, the

channel transaction unlinks as many waiting requests as possible. Any

request which is not an end-of-seek signal from a device is assigned to

the channel associated with the active transaction. (Requests which

have completed seeking have already been identified with a channel.)

The request is then sent to the device simulation. If no requests can

be released, the channel transaction is routed to a wait chain (CHFRE)

.

As a seek-type device completes its seek, the I/O request

tries to seize the channel it is assigned to. If the channel is busy,

the request is linked to await selection.

When an i/O request has completed processing, it releases a

request awaiting the newly freed device, if one exists. If option 6 is

selected, the request released is the first one with a cylinder number

greater than or equal to the current head position. If none exist,

then the last request in the chain is released. The released transaction

then has the next lower cylinder number. The completed transaction

then proceeds to interrupt processing.

For interrupt processing a test is made to determine if the

job which issued the request is to perform any unoverlapped processing,

i.e., parameter 9^0* If parameter 9 equals zero, the transaction

is immediately terminated since the issuing job is not awaiting an

indication of the request's completion. If parameter 9 is not equal to

zero, the issuing job will enter a wait state in the processor logic

segment by entering a MATCH block. If the issuing job is already waiting,

the match is completed, and the i/O request is destroyed. If the

baa not yet reached the wait state, the i/O request waits

in the MATCH block.

www.manaraa.com

IT

3-8 Input/Output Devices

The drum simulation is discussed in the Input/Output Channel

Service segment

.

The disk is a seek type device. That is, it is a device which

may have to perform physical movement of some kind in order to complete

commands issued to it. As such, it may receive and implement its seek

commands without using the channel for more than a few instruction

cycles. Since the time required by the channel to issue the seek

command is considerably below the one millisecond time interval of this

model, it is ignored. The request, however, must be routed through

the channel as described in the previous segment description. The disk

simulation is implemented in such a way that it is reentrant. All

disks are controlled by the same program portion, and all references to

a specific disk number are indirect and dependent on the disk identity

established in parameter h of the request transaction. Zero to sixteen

disks may be modeled, and the number of the last cylinder referred to

on each disk is kept in an associated savevalue location.

As an I/O request transaction enters the disk simulation

portion it seizes the disk identified by parameter h. It then retrieves

the previous cylinder number (head position) for its disk and calculates

a seek delay which is dependent on the amount of head movement required

to reach the new cylinder as indicated in parameter 5 of the request

transaction. After the delay, the new head position is saved and the

transaction is transferred to the Input/Output Channel Service segment

to indicate that the seek phase is completed.

When the transaction returns to this segment, it seizes the

channel and is delayed a random access time for reading or writing. The

transaction then releases the channel and device and returns to the

Input/Output Service segment

.

www.manaraa.com

18

h. SIM/360 USAGE

When using SIM/36O there are two principle ways to modify

the model. The first is to change the system parameters to alter

operating characteristics, and the second is to request system options

which alter the model's configuration. These changes in SIM/360 can

used singly or in combination to provide a representative model of

various real system configurations. The standard GPSS output is used.

k.l System Parameters

Figure 3 contains a list of parameters which may be altered.

If no alteration is made for a parameter, the default value is assumed.

k.2 System Options

The options or tests provided to the basic model allow a

great flexibility. Seven options are provided. In order to use any

of the options, the user must set the associated test switch. For

example, to use option 2, set logic switch TST2

.

Option 1 recalculates the dispatching priority of initiated

; at an interval determined by the value of X$EECLC. Priorities

established on the basis of the variable DISPZ, which may be coded

by the user, or the default variable:

DISPZ = 100-100 * (CPU use time)/ (Time in core). Data

available for recalculation include:

Initial job priority DISP(l,P2)

Total CPU use time of job DISP(2,P2)

Absolute time entered core DISP(3,P2)

Total time in wait state DISP(4,P2)

Core size of job DISP(5,P2)

i/0 requests since XJrior recalculation DISP(6,P2)

www.manaraa.com

19

Parm Type Default

MINCR x
a

60K

DFULT X 115K

INITS X h

JSPAN X 50

SPRED XH
b

Uooo
c

JOBS XH 102

CORE STORAGE U66

RECLC X 5000

ADVAN X 6000

SSPRD X 6ooo

IJOBS X 102

SPACE X

DUMP X

1000

Minimum core assigned a job

Default core assigned to a job

Number of initiators in system; maximum of 5

Length of job queue to be searched for next

job to be initiated

Fixed interval between the creation of new jobs

Total number of jobs to be created by SIM/36O;

J0BS=0 implies unlimited job generation

because of a GPSS restriction; setting TST^A

destroys all internally created jobs

Available core

Used with option 1 to specify the interval

between the recomputation of dispatching

priorities

With option 3> establishes the mean delay

of jobs

With option 3> establishes spread of job delay

With option k, total number of externally and

internally created jobs to be considered by

the system

With option k, arbitrary delay between forma-

tion of successive transactions of an internally

created mult itransact ion job

With option k, number of externally created

jobs which are to be dumped

fullword savevalue

halfword savevalue

time in milliseconds

Figure 3- Alterable parameters

www.manaraa.com

20

Option 2 selects the next job to be done on the basis of the

largest block of contiguous core available, instead of the total

amount of core free, as in the basic program. Because of the accounting

that must be done, this slows the model and should only be used when

needed.

Option 3 arbitrarily delays jobs in the CPU instead of

simulating the action of the CPU. This is much faster running, and

can well be used in conjunction with option 2 for core utilization

checks

.

Option k provides the capability for the user to create his

own job stream to run with the model, with or without the internally

generated job streams. The input job streams can be composed of single

jobs represented by single transactions or it may be constructed of

series of transactions which represent the various configurations of

the jobs. In order to use the option, the user must assign the

parameters the same meaning as the SIM/36O program does (Figure U)

,

and the input transactions must be in the format of a GPSS Jobtape

referenced to block TEST4. If no internally generated jobs are desired,

XH$J0BS should be initialized to 1 and logic switch TST^A set. This

is done to satisfy GPSS requirements.

Option 5 orders the i/O requests by job priority instead of

the default first- in, first-out method.

Option 6 selects the I/O request for processing in order of

minimum seek time on the device

.

Option 7> used in conjunction with option 1, insures equal access

to the CPU by all jobs of equal dispatching priority by altering the order

of the transactions within the GPSS priority chains.

Additionally, new variables and functions may be defined to

replace any of those given. In this manner, the model can be made to

approximate various job streams.

www.manaraa.com

21

Parameter Use

1 job ID number. This must be the same for all transactions

which are part of the same job. Each job must have a different

different number.

2-3 assigned by SIM/36O as a function of the device type

h device identifier. Sixteen disks are available. Their

identity numbers range from 21 to 36.

cylinder number on disk. May range from zero to 199*

6 assigned by SIM/360. Indicates which initiator is assigned

to each job when it enters the CPU.

7 core size. This may range over any number since the model

alters it to fit the system parameters

.

8 upper limit on the number of milliseconds the transaction

may be in overlapped processing.

9-10 used by model to indicate specific CPU times for each loop

11 upper limit on the time spent in unoverlapped processing

for each loop

12 number of I/O requests (loops in CPU) . Number must be

equal to or greater than one

.

13 indicates end of job if equal to one.

Figure h. Job parameters.

k.3 SIM/36O Output

The standard GPSS printout is used in the model. Figures 5 and

6 give a description of what each output element represents. All times

are represented in milliseconds.

The SAVEVALUES are used either to establish system parameters

or for internal communication by the model segments . Only X$CL0CK

provides information to the user. Its value is the absolute GPSS time

that the last externally generated job was dumped. This allows a more

accurate determination of the elapsed time of a run.

Matrix DISP and all GROUPS are used internally by the model.

www.manaraa.com

22

User Chain

INPRO

CHAN2

CHAN3

WTPRO

INQUE

INITW

INWAT

INITS

INITU

BIN

DUAL

CHFRE

DRUM

DISKS (chains 21-36)

Facility

CPU

CHAN2 &
CHAD

DRUM

DISKS (chains

Entries

second and subsequent transactions of

mult itransact ion jobs in CPU (option k)

I/O requests which need to seize channel 2

I/O requests which need to seize channel 3

second and subsequent transactions of

mult itransact ion jobs not yet initiated (option h)

scanned portion of the input queue; maximum

length is established by X$JSPAN

presence of a transaction in this chain indicates

that an initiator is free for an incoming job

unscanned portion of the input queue

holding chain for initiators to insure that

only one initiator at a time is trying to start

a job

initiators in use by jobs in CPU

first transaction of mult itransact ion jobs in

CPU (option k)

I/O requests which need access to either channel

2 or 3

holding chain for channel control transactions

when no I/O requests require the channel

chain of I/O requests awaiting access to the drum

I/O requests awaiting access to the individual

disks

Entries

central processor element

selector channels

2301 drum

J6) 231U disks

IS printout- -user chains and facilities.

www.manaraa.com

23

Storage

CORE

Queue

INQUE

CPU

OLAP

0LAP2

WAITC

SMALJ

MEDIJ

LRGJ

XLRGJ

Entries

accessible free core of the IBM/36O

Entries

entered upon initial entry to job queue and

departed upon termination of job

entered into upon initiation and departed on

termination of the job

time spent trying to accomplish overlapped

processing^ i.e., access to CPU and processing

time

time spent trying to access CPU for overlapped

processing

entered into upon entering a voluntary wait

status, awaiting completion of I/O request;

departed when I/O request is completed

same as INQUE but only for jobs with core

requirement less than or equal to ll6K

same as INQUE but only for jobs with core

requirements between 117K and 232K

same as INQUE but only for jobs with core

requirements between 233K and 3^-8K

same as INQUE but only for jobs with core

requirements between 3^-9K and 466K

Figure 6. Standard GPSS printout --storages and queues

www.manaraa.com

21+

5. MODEL TEST RESULTS

In order to establish the operating characteristics of the

SIM/36O model, two different runs of one hundred jobs each were made

with the basic model and with each of the various model options

selected. The default values were used for all runs. The statistics

of the basic model were used as the basis for all comparisons. For

all tests , the internally generated job stream was composed of jobs

which had the following average distribution of core size required:

20 percent had a core size of 60K bytes,

50 percent had a core size of 115K bytes,

20 percent had a core size of 230K bytes,

6 percent had a core size of 3^5K bytes, and

h percent had a core size of k60K bytes.

These ratios were established by the function CORSZ. Unless

otherwise noted, the job stream used was identical for all runs of a

series of tests so that the effect of system changes would be the only

variable in the model operation. The comparisons were made to determine

the specific effect of the individual options.

options.

When option 1 (dispatch priority recalculation) was selected,

the simulated elapsed time required to run 100 jobs was decreased by

approximately five percent. No alteration was noted in the ratio of

delay times in the various size job queues. This indicates that the

increased efficiency of the CPU caused by priority recalculation had

an approximately equal effect on all job sizes.

Option 2, (contiguous core management) when selected, had

less than one percent effect on the average delay time on all jobs as

recorded in INQUE and on the time required to accomplish 100 jobs, but

caused the ratio of time delays for various core size requirement

jobs to change markedly. A significant increase in the delay time of

: lum and large jobs was noted. This is an expected change because

is not selected, two separated blocks of 115K bytes of

core v. .ct the same as one contiguous block of 230K bytes.

www.manaraa.com

25

Therefore, a job which needed 230K bytes of core could be initiated.

With option 2 selected, the largest block of free core would be 115K

bytes, and the job requiring 23OK bytes would be further delayed.

The change caused by selection of option 2 is only significant

if information is desired on the relative delay times of various core

size jobs. Since option 2 requires increased accounting by the model,

it should only be used when needed.

The selection of option 3 (simplified CPU representation)

causes a different job stream to be created because all of the parameters

of a job transaction are not assigned values, and the random number

sequence which is used to assign core size is different during tests

with this option. In addition, the default values which determine the

delay of each job in the CPU are set higher than the average time

required in the CPU during other option runs. This increase was

established so that the job queue would increase more rapidly during

this option, and allow more flexibility in the testing of various J-Span

lengths or other characteristics. The increase in simulated run time

was 200 percent, and because of the increased average job queue length,

the average turn around time increased by 300 percent. The computer

time required to run the model with option 3 selected was decreased by

60 percent

.

Option h (multiple transaction job creation) also causes a

different job stream to be created because each job requires extra

evaluations of the random number sequence as it loops in the job

creation segment, in order to form the transactions which compose its

various portions. Even though entirely different job streams were

developed, there was only a four percent decrease in the simulated

elapsed time and less than a two percent change in the average turn

around time as computed in INQUE. This indicates that the type of job

streams developed with and without option h selected are similar. The

advantage of option U, besides permitting externally created job streams

to be used, is that by varying the ratio of the various types of job

segments (i/O, MIX, CPU), the jobs created more nearly approximate the

actual jobs of a system. It was also found that dynamic recalculation

www.manaraa.com

26

provides a "better improvement with jobs which change type during their

operation.

When option 6 (i/O ordering by minimum seek time) was selected,

a three percent decrease in elapsed time was noted.

Options 5 (l/0 ordering by job priority) and 7 (reversing of

order of jobs within one priority class), reduce to the basic model

when option 1 is not selected, and no new information was obtained.

www.manaraa.com

27

6 . CONCLUSIONS

The following conclusions and suggestions were formulated

from the statistics created by the operation of the SIM/360 model.

Unless otherwise noted, the default values as previously listed were

used

.

6.1 JSPAN Length Tests

In order to determine the effect of changes in the J- Span

length on the system efficiency, six job streams of 500 jobs each were

run for each J-Span length from 50 jobs to 1^0 jobs (incremented by 5)

•

Additional runs were made with J-Span lengths from 70 to 100 jobs in

order to verify the following conclusions. Optiions 2 and 3 were

selected during all of these runs. Option 2 was selected in order to

provide the most accurate simulation of core usage and management, and

so that the various size jobs were more accurately delayed. Option 3

was selected because it allowed a greater number of jobs to be run at

one time since the model operates much faster with this option.

The results of these runs indicate that average turn around

time is decreased by 6.5 percent as the J-Span length is increased

from 50 to 95 jobs. The increase of the J-Span to 1^0 jobs yields only

1.5 percent further improvement.- As the J-Span is increased, the

difference in average delay time of small jobs (60K or 115K) and that

of other jobs increases. With a J-Span of 50 jobs, the average delay

of medium size (23OK) jobs is 1.23 times that of a small job. When

the J-Span is 95 jobs the ratio is 1.5. With a J-Span of 1^0 jobs the

ratio is I.65. The ratio between small and large job delays ranges

from 2 at 50 jobs to 3 at 1^0 jobs.

With the above data, a management decision could be made as

to the desired "trade-off" between system efficiency, as measured by

overall average turn around time, and the ratio of various size jobs 1

turn around time. From the test results obtained, a J-Span of 95 jobs

is a "good" choice since it gives 80 percent of the maximum increase in

system efficiency and 60 percent of the increase in ratio of turn

around times

.

www.manaraa.com

28

6.2 Comparison of Implicit and Dynamically

Calculated Dispatching Priorities

In order to evaluate the gains accrued by implementing a

dynamic priority recalculation scheme, various formulas for the recal-

culation were implemented, and the results were compared with the

results obtained with no recalculation. Option h was used during all

tests in order to provide a more realistic and varied job stream.

Unless otherwise noted, the default simulated time of 5 seconds was

used as the recalculation interval.

The completion of the 100 job runs without recalculation

required an average of 708 seconds (simulated elapsed time), and this

was used as the base for all of the following comparisons. All ratios

are in reference to the average value of these base runs . The same

job streams were used for each set of tests.

When the default formula was used with option 1, the

average simulation time to complete a run was decreased by seven percent

The average time spent waiting in core for the completion of an i/O

request was decreased by 10 percent

.

The dispatching priorities of the jobs always tended toward

the maximum allowable (100) during these runs „ Because of this, a set

of runs was made with the following formaula:

DISPZ = 100 - 200*(CPU use time)/(time in core).

This formula is the same as the default, except that the priority

creasing factor is twice as large. This spreads out the dispatch

priorities. These runs produced a decrease of 10 percent in the average

simulated elapsed time.

Further tests using this formula and decreasing the recalcu-

lation interval indicated no further improvement in this figure, and it

actually caused a degradation when the interval was decreased to 2.5

seconds

.

www.manaraa.com

29

Another series of runs was made using the formula:

DISPZ = (number of i/O requests between recalculation) /2 .

This formula assigns the highest priority to the job which issued the

most i/O requests during the previous recalculation interval. This

test indicated only a two percent improvement in the average elapsed

time of the model.

From the above results, the largest improvement in system

operation is accrued when the dispatching priority is recalculated

every five seconds according to the formula:

DISPZ = 100 - 200*(CPU use time)/(time in core).

6.3 Comparison of i/O Request Ordering Techniques

Tests were run in order to compare the average simulated

elapsed time of the model when the various possible i/O request

ordering techniques were used. Option 1 with the default recalcu- -

lation formula and option k were used for all tests.

The default ordering method is first-in, first-out. The

average elapsed time for 100 jobs using the default ordering technique

was 660 seconds. When the I/O requests were ordered by job priority

(option 5) j the average elapsed time increased by four percent. The

increase was caused by an increase in the average time spent in core by

jobs awaiting completion of an i/O request.

Option 6 (i/O request ordering by minimum seek time) was tested

with and without dynamic priority recalculation (option l) . In both

cases, there was a three percent improvement in the simulated elapsed

time. The improvement came about by decreasing the average time re-

quired to complete an i/O request, and it was independent of the job

dispatching priority formulation.

6

.

k Summary

The model test results obtained indicate that the Operating

System configuration which provides for the most efficient use of the

computer will have a J-Span of 95 jobs or more (depending on management

www.manaraa.com

30

decision on the ratio of comparative turn around times of various job

sizes) . It will have a procedure to dynamically recalculate the

dispatching priority of jobs in the CPU every five seconds according

to the formula:

DISPZ = 100 - 200*(CPU use time)/(time in core), and the

I/O requests should be ordered by minimum device seek time.

The SIM/360 model can be used to determine the effect of

future changes to the IBM Operating System/360.

www.manaraa.com

31

BIBLIOGRAPHY

Corbet, Larry L. and Jones, D. J. OS/360 Advanced Multiprogramming
Performance Analysis Via Simulation, IBM Technical Information
Exchange, Z77-623I. IBM Corporation, Technical Publications
Department, White Plains, New York, 1966

.

Graham, John H. Modeling and Computer Simulation, IBM Technical
Information Exchange, Z77-8057- IBM Corporation, Technical
Publication Department, White Plains, New York, 1968

.

Hillier, F. S. and Lieberman, G. J. Introduction to Operations
Research, Holden-Day, Inc., San Francisco, September, 1968

.

Marshal, B. S. "Dynamic Calculation of Dispatching Priorities Under
OS/360 MVT," Datamation, Volume 15, Number 8, Pages 93-97,
August, 1969.

Naylor, T. H. Computer Simulation Techniques, John Wiley and Sons,
Inc., New York and London, 1966.

www.manaraa.com

www.manaraa.com
*«<

\«JI*

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

www.manaraa.com

